If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.8t^2+16t-40=0
a = -0.8; b = 16; c = -40;
Δ = b2-4ac
Δ = 162-4·(-0.8)·(-40)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{2}}{2*-0.8}=\frac{-16-8\sqrt{2}}{-1.6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{2}}{2*-0.8}=\frac{-16+8\sqrt{2}}{-1.6} $
| 3(5Y+20=2(3y-6) | | -4^5x2^5=2^5 | | 3x^2-21x+44=0 | | 7^9=2n+1^9 | | v^2+18v+53=0 | | 3.5/x=0.7 | | 3/2b+6+1/2b=15+b | | 42v-56=56+56v | | F(-13)=x2-4 | | |2s+7|=|s+2| | | 3(2e-7)=8e-9 | | 2s+7=s+2| | | 2s+7=s+2 | | Z=10+10i | | 8q+12=4(3+2q | | 7+3(x+1)=16+2 | | 4(x+5)=39 | | 12x^2-7=0 | | 8x+12+4x+24=180 | | 170=2(w+3w+5) | | 42=18/w | | -4(3x+2)=144 | | 5(x+5)-(-6x-6)=10x | | 2x+8=30;x=11 | | 3x+9=3(x+8) | | 5x+(-3)=10 | | 24/k=85 | | 5=2x-4x+9= | | -5a+10+8a=4a-6a | | 4(p+1.1)=2p+p+12.4 | | 5/7s=10/21 | | 6x-6/9=2x+14/11 |